Erythrocyte: Programmed Cell Death
نویسندگان
چکیده
Erythrocytes are produced by a complex and finely regulated process of erythropoiesis. It starts with a pluripotential stem cell that, in addition of its self replication capacity, can give rise to separate cell lineages. Erythropoiesis passes from the stem cell through the multipotent progenitor CFU-GEMM (colony-forming unit granulocyte erythroid monocyte and megakaryocyte), and then BFU-E (burst-forming unit erythroid) and CFU-E (colonyforming unit eryhtroid), to the first recognizable erythrocyte precursor in the bone marrow, the pronormoblast. This cell gives rise to a series of progressively smaller normoblasts with increasing content of hemoglobin. The nucleus is finally extruded from the late normoblast leading to mature red blood cell through the reticulocyte stage. Erythropoiesis ends with the mature circulating red cell, which is a non-nucleated biconcave disc, performing its function of oxygen delivery. In this process, the glycoprotein hormone erythropoietin has been known as the major humoral regulator of red cell production. It is now well established that erythropoietin stimulates erythropoiesis, at least in part, by protecting erythroblasts from apoptosis. Human mature erythrocytes are terminally differentiated cells that are devoid of mitochondria, as well as of nucleus and other organelles. In circulation, the red cell is constantly tested for its capacity to undergo marked cellular deformation. This ability to change its shape is essential for optimal cell function, since the resting diameter of the human red cell far exceeds that of the capillaries and splenic endothelial slits through which it must pass (Mohandas & Groner, 1989). A two dimensional network of proteins interacting between transmembrane location and cytoplasmic surface of the plasma membrane gives the red blood cell its properties of elasticity and flexibility that allows the success of this journey. The mature erythrocyte is unable to self-repair and has no capacity to synthesize proteins. Therefore, its lifespan is finite and is shortened further when the cell’s environment becomes hostile or when the erythrocyte’s ability to cope with damaging extracellular influences becomes impaired. The erythrocyte limited lifespan implies that, as in other cells, life and death are well regulated for erythrocytes, in spite of their lack of capacity for protein synthesis (Bosman et al., 2005). In the present review, we aim to show updated information concerning erythrocyte death in order to contribute to the understanding of the physiopathological relationship of this process with the development of anemia.
منابع مشابه
Impact of Duration and Severity of Persistent Pain on Programmed Cell Death
Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...
متن کاملImpact of Duration and Severity of Persistent Pain on Programmed Cell Death
Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...
متن کاملThe Role of Caspase 9 during Programmed Cell Death in Ciliary Ganglia of Chick Embryos
During programmed cell death (PCD) apoptosis is controlled by many factors such as proteases. With no specific protease (s) known during PCD in the developing nervous system so far, we sought to determine if any specific protease (s) is involved in this process and therefore used different protease inhibitors during PCD (from embryonic day 6 to 10) in chick embryos. Among the inhibitors commerc...
متن کاملIn Vitro Sensitization of Erythrocytes to Programmed Cell Death Following Baicalein Treatment
The polyphenolic flavonoid Baicalein has been shown to trigger suicidal death or apoptosis of tumor cells and is thus considered for the prevention and treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythroc...
متن کاملMemory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens
New approaches based on induction of antigen-specific immunological tolerance are being explored for treatment of autoimmunity and prevention of immunity to protein drugs. Antigens associated with apoptotic debris are known to be processed tolerogenically in vivo. Our group is exploring an approach toward antigen-specific tolerization using erythrocyte-binding antigens, based on the premise tha...
متن کاملProducing Soluble Human Programmed Cell Death Protein-1: A Natural supporter for CD4+T cell Cytotoxicity and Tumor Cells Apoptosis
Background: Programmed cell death protein-1 (PD-1)/PD-L1 pathway is one of the immune checkpoint pathways involved in regulation of the immune responses and suppression of anti-tumor defense. PD-1/B7-H1-blocking antibodies improve immune responses such as cytotoxic activity of CD8+/CD4+T cells and also increase mortality of tumor cells; however their use is accompanied by adverse effects in pat...
متن کامل